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Elahe. Supervised learning: learning by going over examples from each category. An item/thing with a set of features and a label for it.
Red bird,….
Do we say yellow banana? What do we call green bananas?
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Allison - human biases are manifested in the algorithms/models they make. And in some cases those biases may be exaggerated. 


Implicit bias

Sampling bias

Automation bias

Reporting bias

In-group bias

Coverage bias

Out-group
homogeneity bias

Non-response
bias

Confirmation bias
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Source: https://developers.google.com/machine-learning/crash-course/fairness/video-lecture
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Bekky – so far we found out there is no such thing as Neutral system – human biases exist or are exaggerated when they enter an automated system
Another example: AI in court system
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An Algorithm for the best PB&J sandwich?

The “best” PB&J sandwich could mean a lot

Child

Parent

Doctor

Taste

Nutrition

Cost
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Allison - What would someone want the tasiest? The healthiest? Different stakeholders have different goals for it. Also, would you optimize for looks or cleanness? Who cares if the kitchen is clean afterwards, or if the sandwich looks nice?


Nseries

BLACK #IRROR

Arkangel

Worried about her daughter’s safety,
single mom Marie signs up for a
cutting-edge device that monitors the
girl's whereabouts -- and much more.

Crocodile

Architect Mia scrambles to keep a dark
secret under wraps, while insurance
investigator Shazia harvests people's
memories of a nearby accident scene.

Hang the DJ 51m
Paired up by a dating program that puts
an expiration date on all relationships,
Frank and Amy soon begin to question
the system's logic.

Metalhead

At an abandoned warehouse,
scavengers searching for supplies
encounter a ruthless foe and flee for
their lives through a bleak wasteland.

Black Museum

On a dusty stretch of highway, a traveler
stumbles across a museum that boasts
rare criminal artifacts -- and a disturbing
main attraction.
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NESEARCH ARTICLES

Dissecting racial bias in an algorithm used to manage
the health of populations
Ziad Obermeyer™%*, Brian Powers?, Christine Vogeli*, Sendhil Mullainathan®*+

Health systems rely on commercial prediction algorithms to identify and help patients with complex
health needs. We show that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients
are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.
Remedying this disparity would increase the percentage of Black patients receiving additional

help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than
liness, but unequal access to care means that we spend less money caring for Black patients than
for White patients. Thus, despite health care cost appearing to be an effective proxy for health

by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of
convenient, seemingly effective proxies for ground truth can be an important source of algorithmic
bias in many contexts.

Overbooked and Overlooked: Machine
Learning and Racial Bias in Medical
Appointment Scheduling

32 Pages -+ Posted: 23 Oct 2019

SOCIAL SCIENCE

Assessing risk, automating racism

A health care algorithm reflects underlying racial bias in society

By Ruha Benjamin | era, the intentlon to deepen mcial inequi- | beyond the algorithm developers by con-
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Bekky - Optimizing for whom? Patient, clinic, doctor, or insurance company?


Type | and Type Il errors & stakeholders

Discussion:

1. Ifthere are two tests and they have all numbers similar except for False Positives, which one would
you prefer, the one with higher or lower number of False Positives?

2. Ifthere are two tests and they have all numbers similar except for False Negatives, which one would
you prefer, the one with higher or lower number of False Negative?

3. If we're comparing two tests and they have different numbers for both False Negatives and False

Positives. Would you pick the one with lower False Positives or the one with lower False Negatives?
Can your answer depend on the system we're discussing or depend on what groups of stakeholders we

are representing? See the ethical matrix below and use a [-2,+2] scale (-2,-1,0,+1,+2) to show a group may

be negatively /positively impacted by an outcome; 0 if they may not be impacted much or be.

False Positive False Negative

patient

doctors

Insurance company
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Allison introduces activity- we all discuss.


H.R.2231 - Algorithmic Accountability Act of 2019

116th Congress (2019-2020) | Get alerts

BILL Hide Overview X

Sponsor: Rep. Clarke, Yvette D. [D-NY-9] (Introduced 04/10/2019)

Committees: House - Energy and Commerce

Latest Action: House - 04M10/2019 Referred to the House Committee on Energy and Commerce.

S.2637 - Mind Your Own Business Act of 2019

116th Congress (2019-2020) | Get alerts

BILL Hide Overview X

Sponsor: sen. Wyden, Ron [D-0R] {Introduced 10/17/2019)

Committees: Senate - Finance

Latest Action: Senate - 101772019 Read twice and referred to the Committee on Finance.
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Elahe- Algorithmic accountability act: creators vs. operator – assessment of impact


Artificial Intelligence Learning Cycle

Artificial Intelligence Learning Cycle (AILC; Antink-Meyer & Arias, in press)

AILC Phase

Resulting from this phase, learners:

Empathy

* become familiar with a problem that is embedded in a context/storyline
* built personal connections with the context/storyline

Engage

* become familiar with a Al technique, tool, or service that they will need in the AILC
e developed an understanding of the nature of the problem
e identified parameters involved in the problem

Explore |

e explored concepts related to the problem
e experienced practices needed in the AILC including collection and analysis data needed in the AILC

Explain

» self-assessed knowledge of concepts and practices
e developed understanding about the skills needed to create a solution to the problem
e improved knowledge about the concepts related to the context/storyline and problem

Explore Il

e prototyped (e.g. computer programs, simulated models, investigation of design elements)
e analyzed potential design solutions and justified their designs using their knowledge of concepts and
skills

Elaboration

e application of evidence from previous AILC phases to a unique design solution
e analysis of design solution performance
e proposed improvements based on performance analyses
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Cascading teaching-learning model

4 _ . Al literacy transfer & )
lCreat.lng authe_ntlc Al internalization Our version PST’s
earning experiences o . :
(explicit > tacit) of AILC adaptations
knowledge-
building
Assessment and Design of population- Population-
. : - o Evaluations
decoding of Al and setting-specific specific
N bottlenecks learning experiences y
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Google’s Teachable Machines

https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-
browser-with-tensorflow-js-7dd0bc881cd5



https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
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Example: Finite State Machines

Description

Time

diagrams with their peers.

Students will discover that while Cozmo can sense and act, Cozmo's brain and thinking ~ 2 hrs
process can be modified by them using code blocks Calypso. Students are introduced to
states, transition functions, and state diagrams. Students discuss states and transitions in
daily life scenarios and are asked to build a state machine diagram for their emotions.

Students start with a set of identical emotions, then compare their unique state machine

Hurt
Sad

Happy
Neutral

Emotional States

Someone acts mean or bullies
Hears a friend’s empathetic note
Sees a friendly face in hallway

Events . -
Receives a positive comment
Blames oneself with no grounds
Stays put
Leaves the negative environment
Actions Responds and reasons

Looks at the bully puzzled & shocked

receives a positive comment

Blames oneself

Stays put )
someone acts mean or bullies

18

Cozmo

Sense

Think

Act

Obstacle: block in sight

States Sound: sound audible
Events Recogn!ze which block
Recognize
Move straight
Actions Change direction

Say something
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